Intelligent automation solutions from smart bots to process automation, designed to streamline operations and eliminate repetitive tasks.
Complete automation services to optimize workflows and enhance business efficiency.
Intelligent chatbots and conversational AI for customer service, sales, and business process automation.
# WhatsApp Bot Implementation
from flask import Flask, request
import requests
import json
app = Flask(__name__)
class WhatsAppBot:
def __init__(self, access_token, phone_number_id):
self.access_token = access_token
self.phone_number_id = phone_number_id
self.base_url = "https://graph.facebook.com/v17.0"
def send_message(self, to, message):
url = f"{self.base_url}/{self.phone_number_id}/messages"
headers = {
"Authorization": f"Bearer {self.access_token}",
"Content-Type": "application/json"
}
data = {
"messaging_product": "whatsapp",
"to": to,
"text": {"body": message}
}
response = requests.post(url, headers=headers, json=data)
return response.json()
def process_message(self, message_data):
# Extract message content
message = message_data.get('text', {}).get('body', '')
sender = message_data.get('from')
# Simple intent recognition
if 'hello' in message.lower():
response = "Hello! How can I help you today?"
elif 'price' in message.lower():
response = "Our pricing starts at $99/month. Would you like more details?"
elif 'support' in message.lower():
response = "I'll connect you with our support team. Please wait a moment."
else:
response = "Thank you for your message. Our team will get back to you soon."
return self.send_message(sender, response)
@app.route('/webhook', methods=['POST'])
def webhook():
data = request.get_json()
if data.get('object') == 'whatsapp_business_account':
for entry in data.get('entry', []):
for change in entry.get('changes', []):
if change.get('field') == 'messages':
messages = change.get('value', {}).get('messages', [])
for message in messages:
bot.process_message(message)
return 'OK', 200
Robotic Process Automation to eliminate repetitive tasks and streamline business workflows.
# RPA Workflow Automation
import pandas as pd
from selenium import webdriver
from selenium.webdriver.common.by import By
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
import schedule
import time
class RPAWorkflow:
def __init__(self):
self.driver = None
self.setup_driver()
def setup_driver(self):
options = webdriver.ChromeOptions()
options.add_argument('--headless')
self.driver = webdriver.Chrome(options=options)
def extract_data_from_website(self, url, selector):
self.driver.get(url)
elements = self.driver.find_elements(By.CSS_SELECTOR, selector)
data = [element.text for element in elements]
return data
def process_excel_data(self, file_path):
df = pd.read_excel(file_path)
# Data processing logic
df['processed_date'] = pd.Timestamp.now()
df['status'] = df.apply(self._determine_status, axis=1)
# Save processed data
output_path = f"processed_{file_path}"
df.to_excel(output_path, index=False)
return output_path
def send_automated_email(self, to_email, subject, body, attachment=None):
smtp_server = "smtp.gmail.com"
smtp_port = 587
msg = MIMEMultipart()
msg['From'] = "automation@company.com"
msg['To'] = to_email
msg['Subject'] = subject
msg.attach(MIMEText(body, 'plain'))
if attachment:
with open(attachment, "rb") as f:
attach = MIMEText(f.read(), 'base64', 'utf-8')
attach.add_header('Content-Disposition', f'attachment; filename={attachment}')
msg.attach(attach)
server = smtplib.SMTP(smtp_server, smtp_port)
server.starttls()
server.login("automation@company.com", "password")
server.send_message(msg)
server.quit()
def daily_report_automation(self):
# Extract data from multiple sources
web_data = self.extract_data_from_website("https://dashboard.company.com", ".metric-value")
# Process Excel reports
processed_file = self.process_excel_data("daily_data.xlsx")
# Generate summary report
report = f"""
Daily Automation Report
======================
Date: {pd.Timestamp.now().strftime('%Y-%m-%d')}
Web Metrics: {len(web_data)} items processed
Excel Data: {processed_file} generated
Status: Completed Successfully
"""
# Send email notification
self.send_automated_email(
"manager@company.com",
"Daily Automation Report",
report,
processed_file
)
# Schedule automation
rpa = RPAWorkflow()
schedule.every().day.at("09:00").do(rpa.daily_report_automation)
while True:
schedule.run_pending()
time.sleep(60)
Specialized web scraping and data extraction tools for legal research, compliance monitoring, and document analysis.
# Legal Data Crawler
import scrapy
import requests
from bs4 import BeautifulSoup
import re
from datetime import datetime
import json
class LegalCrawler:
def __init__(self):
self.session = requests.Session()
self.base_urls = {
'court_records': 'https://courtrecords.gov',
'regulations': 'https://regulations.gov',
'case_law': 'https://caselaw.findlaw.com'
}
def crawl_court_records(self, case_number):
url = f"{self.base_urls['court_records']}/search"
params = {'case_number': case_number}
response = self.session.get(url, params=params)
soup = BeautifulSoup(response.content, 'html.parser')
case_data = {
'case_number': case_number,
'title': soup.find('h1', class_='case-title').text.strip(),
'date_filed': soup.find('span', class_='date-filed').text.strip(),
'status': soup.find('span', class_='case-status').text.strip(),
'parties': self._extract_parties(soup),
'documents': self._extract_documents(soup),
'crawled_at': datetime.now().isoformat()
}
return case_data
def monitor_regulatory_changes(self, keywords):
url = f"{self.base_urls['regulations']}/api/documents"
params = {
'filter[searchTerm]': ' '.join(keywords),
'filter[postedDate][gte]': datetime.now().strftime('%Y-%m-%d'),
'sort': '-postedDate'
}
response = self.session.get(url, params=params)
data = response.json()
new_regulations = []
for document in data.get('data', []):
regulation = {
'title': document['attributes']['title'],
'agency': document['attributes']['agencyId'],
'posted_date': document['attributes']['postedDate'],
'summary': document['attributes']['summary'],
'document_id': document['id'],
'url': f"https://regulations.gov/document/{document['id']}"
}
new_regulations.append(regulation)
return new_regulations
def extract_case_citations(self, text):
# Pattern for legal citations (simplified)
citation_patterns = [
r'\d+\s+[A-Z][a-z\.]+\s+\d+', # Volume Reporter Page
r'\d+\s+U\.S\.\s+\d+', # Supreme Court
r'\d+\s+F\.\d+d\s+\d+' # Federal Reporter
]
citations = []
for pattern in citation_patterns:
matches = re.findall(pattern, text)
citations.extend(matches)
return list(set(citations)) # Remove duplicates
def analyze_legal_document(self, document_text):
analysis = {
'word_count': len(document_text.split()),
'citations': self.extract_case_citations(document_text),
'key_terms': self._extract_legal_terms(document_text),
'sentiment': self._analyze_sentiment(document_text),
'complexity_score': self._calculate_complexity(document_text)
}
return analysis
def generate_compliance_report(self, company_name, regulations):
report = {
'company': company_name,
'report_date': datetime.now().isoformat(),
'regulations_checked': len(regulations),
'compliance_status': [],
'recommendations': []
}
for regulation in regulations:
compliance_check = self._check_compliance(company_name, regulation)
report['compliance_status'].append(compliance_check)
if not compliance_check['compliant']:
report['recommendations'].append({
'regulation': regulation['title'],
'action_required': compliance_check['action_required'],
'deadline': compliance_check.get('deadline'),
'priority': compliance_check.get('priority', 'Medium')
})
return report
Seamless integration between different software systems, APIs, and business applications.
# System Integration Framework
import asyncio
import aiohttp
import json
from datetime import datetime
import logging
class SystemIntegrator:
def __init__(self):
self.integrations = {}
self.logger = logging.getLogger(__name__)
async def register_system(self, system_name, config):
self.integrations[system_name] = {
'config': config,
'last_sync': None,
'status': 'active'
}
async def sync_data(self, source_system, target_system, data_mapping):
try:
# Extract data from source
source_data = await self._extract_data(source_system)
# Transform data according to mapping
transformed_data = self._transform_data(source_data, data_mapping)
# Load data to target system
result = await self._load_data(target_system, transformed_data)
# Update sync status
self.integrations[source_system]['last_sync'] = datetime.now()
return {
'status': 'success',
'records_processed': len(transformed_data),
'timestamp': datetime.now().isoformat()
}
except Exception as e:
self.logger.error(f"Sync failed: {str(e)}")
return {'status': 'error', 'message': str(e)}
async def _extract_data(self, system_name):
config = self.integrations[system_name]['config']
if config['type'] == 'rest_api':
async with aiohttp.ClientSession() as session:
headers = {'Authorization': f"Bearer {config['api_key']}"}
async with session.get(config['endpoint'], headers=headers) as response:
return await response.json()
elif config['type'] == 'database':
# Database extraction logic
import asyncpg
conn = await asyncpg.connect(config['connection_string'])
rows = await conn.fetch(config['query'])
await conn.close()
return [dict(row) for row in rows]
def _transform_data(self, data, mapping):
transformed = []
for record in data:
new_record = {}
for source_field, target_field in mapping.items():
if source_field in record:
value = record[source_field]
# Apply transformations
if isinstance(target_field, dict):
if 'transform' in target_field:
value = self._apply_transformation(value, target_field['transform'])
new_record[target_field['field']] = value
else:
new_record[target_field] = value
transformed.append(new_record)
return transformed
async def _load_data(self, system_name, data):
config = self.integrations[system_name]['config']
if config['type'] == 'rest_api':
async with aiohttp.ClientSession() as session:
headers = {
'Authorization': f"Bearer {config['api_key']}",
'Content-Type': 'application/json'
}
results = []
for record in data:
async with session.post(config['endpoint'],
headers=headers,
json=record) as response:
results.append(await response.json())
return results
async def real_time_sync(self, source_system, target_system, mapping):
# Set up real-time synchronization using webhooks or polling
while True:
try:
result = await self.sync_data(source_system, target_system, mapping)
self.logger.info(f"Sync completed: {result}")
# Wait before next sync (configurable interval)
await asyncio.sleep(300) # 5 minutes
except Exception as e:
self.logger.error(f"Real-time sync error: {str(e)}")
await asyncio.sleep(60) # Wait 1 minute before retry
# Usage example
async def main():
integrator = SystemIntegrator()
# Register systems
await integrator.register_system('crm', {
'type': 'rest_api',
'endpoint': 'https://api.crm.com/contacts',
'api_key': 'your_api_key'
})
await integrator.register_system('email_marketing', {
'type': 'rest_api',
'endpoint': 'https://api.emailservice.com/subscribers',
'api_key': 'your_email_api_key'
})
# Define data mapping
mapping = {
'email': 'email_address',
'first_name': 'first_name',
'last_name': 'last_name',
'created_at': {'field': 'signup_date', 'transform': 'date_format'}
}
# Start real-time sync
await integrator.real_time_sync('crm', 'email_marketing', mapping)
Let's identify automation opportunities and implement intelligent solutions to streamline your operations.
We're ready to transform your vision into reality. Tell us about your project and we'll help you create the perfect solution.
hello@revorn.ai
contact@revorn.ai
Response within 24 hours
24/7 Technical Support
We work with clients worldwide
Support in English and Spanish