Cutting-edge AI solutions from machine learning models to natural language processing, designed to automate processes and unlock intelligent insights from your data.
Comprehensive artificial intelligence services covering machine learning, NLP, and predictive analytics.
Custom machine learning model development and training for specific business use cases and data patterns.
# Custom Model Training
import tensorflow as tf
from tensorflow.keras import layers
model = tf.keras.Sequential([
layers.Dense(128, activation='relu', input_shape=(input_dim,)),
layers.Dropout(0.3),
layers.Dense(64, activation='relu'),
layers.Dense(num_classes, activation='softmax')
])
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
history = model.fit(X_train, y_train,
validation_data=(X_val, y_val),
epochs=100, batch_size=32)
Advanced NLP solutions for text analysis, sentiment analysis, chatbots, and language understanding.
# NLP Pipeline
from transformers import pipeline, AutoTokenizer, AutoModel
# Sentiment Analysis
sentiment_analyzer = pipeline("sentiment-analysis")
result = sentiment_analyzer("This product is amazing!")
# Named Entity Recognition
ner = pipeline("ner", aggregation_strategy="simple")
entities = ner("Apple Inc. was founded by Steve Jobs in California.")
# Custom Text Classification
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
def classify_text(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
return predictions
Intelligent recommendation engines using collaborative filtering, content-based filtering, and hybrid approaches.
# Recommendation System
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
class RecommendationEngine:
def __init__(self):
self.vectorizer = TfidfVectorizer(stop_words='english')
self.similarity_matrix = None
def fit(self, items_df):
# Content-based filtering
tfidf_matrix = self.vectorizer.fit_transform(items_df['description'])
self.similarity_matrix = cosine_similarity(tfidf_matrix)
def recommend(self, item_id, num_recommendations=5):
item_index = self.items_df.index[self.items_df['id'] == item_id][0]
similarity_scores = list(enumerate(self.similarity_matrix[item_index]))
similarity_scores = sorted(similarity_scores, key=lambda x: x[1], reverse=True)
recommended_indices = [i[0] for i in similarity_scores[1:num_recommendations+1]]
return self.items_df.iloc[recommended_indices]
Vector embeddings and Retrieval-Augmented Generation for enhanced AI applications and knowledge systems.
# RAG Implementation
import openai
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Pinecone
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
# Initialize embeddings and vector store
embeddings = OpenAIEmbeddings()
vectorstore = Pinecone.from_documents(documents, embeddings, index_name="knowledge-base")
# Create RAG chain
llm = OpenAI(temperature=0)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever(search_kwargs={"k": 3}),
return_source_documents=True
)
# Query with context
def query_with_context(question):
result = qa_chain({"query": question})
return {
"answer": result["result"],
"sources": result["source_documents"]
}
Advanced forecasting and predictive modeling for business intelligence and decision-making automation.
# Predictive Analytics
import pandas as pd
from prophet import Prophet
import numpy as np
from sklearn.ensemble import RandomForestRegressor
# Time Series Forecasting
def forecast_sales(historical_data):
df = historical_data[['date', 'sales']].rename(columns={'date': 'ds', 'sales': 'y'})
model = Prophet(
yearly_seasonality=True,
weekly_seasonality=True,
daily_seasonality=False
)
model.fit(df)
# Create future dataframe
future = model.make_future_dataframe(periods=30)
forecast = model.predict(future)
return forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
# Anomaly Detection
def detect_anomalies(data, threshold=2):
mean = np.mean(data)
std = np.std(data)
anomalies = []
for i, value in enumerate(data):
z_score = abs((value - mean) / std)
if z_score > threshold:
anomalies.append(i)
return anomalies
Let's discuss your AI requirements and build intelligent systems that transform your business operations.
We're ready to transform your vision into reality. Tell us about your project and we'll help you create the perfect solution.
hello@revorn.ai
contact@revorn.ai
Response within 24 hours
24/7 Technical Support
We work with clients worldwide
Support in English and Spanish